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Abstract

The concept of vorticity-preserving scheme introduced by Morton and Roe is considered for the system wave equation
and extended to the linearised and full compressible Euler equations. Useful criteria are found for a general dissipative
conservative scheme to be vorticity preserving. Using them, a residual-based scheme is shown to be vorticity preserving
for the Euler equations, which is confirmed by vortex flow calculations.
� 2007 Published by Elsevier Inc.
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1. Introduction

Reducing the numerical diffusion of vortices is a key point in many computational fluid dynamics problems
such as the simulation of aircraft trailing vortices, blade–vortex interaction of helicopter rotors, rotor–stator
interaction of turbo-shaft engines, some aeroacoustic problems and weather forecasting. A classical approach
for reducing the numerical diffusion of vorticity is to enhance the order of accuracy of the discretisation
scheme, either by increasing the number of points in each space direction (as in [1–3] for instance) or in a more
compact way (e.g. [4–9]).

Another point of view has been proposed by Morton and Roe [10] through the concept of vorticity preserv-
ing in pure acoustics. In the acoustic model, any vorticity field is time invariant and Morton and Roe have
found that the Lax–Wendroff–Ni scheme [11], also known as the rotated Richtmyer scheme, preserves exactly
a discrete analogue of the vorticity. In the present paper, we pursue this investigation and try to characterise
general dissipative schemes preserving vorticity. Our starting point is a continuous initial-value problem for
the system wave equation (acoustics) augmented with a general dissipative term, for which a criterion is found
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for the dissipation to have no effect on the vorticity field. Then the study is transposed at the discrete level to
handle conservative schemes of arbitrary order of accuracy. After that, the definition of vorticity preserving is
extended to the linearised Euler equations describing acoustics with advection. Useful conditions can be
derived for a dissipative scheme to approximate the vorticity transport equation without any numerical diffu-
sion. Finally, the analysis is suitably extended to the full Euler equations to provide a similar result.

As a first consequence, the present work proves that a residual-based scheme of second-order accuracy,
named RBV2, is vorticity preserving for the Euler equations. To check this property, numerical applications
are presented for steady and unsteady vortex flows. The RBV2 scheme is also compared to a classical scheme
of third-order accuracy in space.

2. Pure acoustics

2.1. Continuous analysis

Pure acoustics is governed by the Euler equations linearised around a flow at rest. In a dimensionless form
where the sound speed and density of the flow at rest are equal to one and in two space dimensions, these
equations can be written as:
otwþ oxf þ oyg ¼ 0 ð1Þ

with
w ¼
p

u

v

2
64
3
75; f ¼ f ðwÞ ¼

u

p

0

2
64
3
75; g ¼ gðwÞ ¼

v

0

p

2
64
3
75; ð2Þ
where t is the time, x and y are Cartesian space coordinates, u and v denote the x and y-components of the
perturbed fluid velocity ~V and p is the perturbed pressure. The perturbed density is equal to p. Of course,
we could replace the hyperbolic system (1) by the classical wave equation
ottp ¼ oxxp þ oyyp;
but we prefer to keep the system form for further extensions to the linearised and full Euler equations.
The velocity equations, i.e. the two last equations of the system, express
ot
~V þ ~rp ¼ 0; ð3Þ
so that by taking the curl of (3), the pressure disappears and we get
otx ¼ 0; ð4Þ

where x ¼ oxv� oyu is the vorticity. More precisely in the present 2-D case, the vorticity vector ~x ¼ ~r� ~V is
normal to the x, y-plane and x is the normal component. Eq. (4) shows that in pure acoustics, the vorticity is
preserved in time.

At the discrete level, it is easy to find centred discretisations of the pressure gradient and of the vorticity that
lead to a similar vorticity preservation. The difficulty arises when numerical dissipation (either added or
induced by upwinding) is taken into account. The question is thus to characterise dissipative schemes preserv-
ing vorticity. To address this issue, we first consider a continuous model of dissipative scheme. Let us begin
with the simple model:
otwþ oxf þ oyg ¼ eðoxxwþ oyywÞ; ð5Þ

where w, f and g are given by (2) and e is a positive parameter. By taking the curl of the velocity equations of
(5), we obtain
otx ¼ eðoxxxþ oyyxÞ ð6Þ

and vorticity preservation is lost. Instead, vorticity is diffused by the Laplacian operator in the right-hand side
of (6).
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To go beyond, we consider the more general dissipative system:
otwþ oxf þ oyg ¼ e1oxðU1qÞ þ e2oyðU2qÞ; ð7Þ

where w, f and g are given by (2), e1 and e2 are positive parameters, U1 (respectively U2) is a constant matrix
having the same eigenvectors as the Jacobian matrix A ¼ df =dw (resp. B ¼ dg=dw) and q is a vector involving
odd derivatives in space or time of w, f and g.

Theorem 1. The acoustic system with dissipation (7) is vorticity preserving for any choice of q if and only if
e1U1 ¼ eA; e2U2 ¼ eB; ð8Þ

where e is a scalar parameter.

Proof 1. For acoustics, the eigenvalues of A and B are
að1Þ ¼ bð1Þ ¼ �1; að2Þ ¼ bð2Þ ¼ 0; að3Þ ¼ bð3Þ ¼ 1
and we have
A ¼ T A Diag½aðiÞ�T�1
A ; B ¼ T B Diag½bðiÞ�T�1

B ;
with the unitary matrices
T A ¼
�c 0 c

c 0 c

0 1 0

2
64

3
75; T B ¼

�c 0 c

0 1 0

c 0 c

2
64

3
75; T�1

A ¼ T t
A; T�1

B ¼ T t
B;
where c ¼ 1=
ffiffiffi
2
p

.
The matrices Up can be expressed in terms of their eigenvalues uðiÞp as:
U1 ¼ T A Diag½uðiÞ1 �T�1
A ¼

1
2
ðuð3Þ1 þ uð1Þ1 Þ 1

2
ðuð3Þ1 � uð1Þ1 Þ 0

1
2
ðuð3Þ1 � uð1Þ1 Þ 1

2
ðuð3Þ1 þ uð1Þ1 Þ 0

0 0 uð2Þ1

2
664

3
775;

U2 ¼ T B Diag½uðiÞ2 �T�1
B ¼

1
2
ðuð3Þ2 þ uð1Þ2 Þ 0 1

2
ðuð3Þ2 � uð1Þ2 Þ

0 uð2Þ2 0

1
2
ðuð3Þ2 � uð1Þ2 Þ 0 1

2
ðuð3Þ2 þ uð1Þ2 Þ

2
664

3
775:
By taking the curl of the velocity equations of (7), we obtain the vorticity equation:
otx ¼ e1oxcurl1 þ e2oycurl2 ð9Þ

with
curlp ¼ oxðUpqÞð3Þ � oyðUpqÞð2Þ; p ¼ 1; 2;
where the superscript refer to the vector components.
Using the above expression of U1 and U2, we get
curl1 ¼ uð2Þ1 oxqð3Þ �
1

2
ðuð3Þ1 � uð1Þ1 Þoyqð1Þ �

1

2
ðuð3Þ1 þ uð1Þ1 Þoyqð2Þ;

curl2 ¼
1

2
ðuð3Þ2 � uð1Þ2 Þoxqð1Þ þ

1

2
ðuð3Þ2 þ uð1Þ2 Þoxqð3Þ � uð2Þ2 oyqð2Þ:
Denoting �uðiÞp ¼ epuðiÞp , the right-hand side of Eq. (9) becomes
RHS ¼ �uð2Þ1 oxxqð3Þ þ
1

2
ð�uð3Þ2 � �uð1Þ2 � �uð3Þ1 þ �uð1Þ1 Þoxyqð1Þ �

1

2
ð�uð3Þ1 þ �uð1Þ1 Þoxyqð2Þ

þ 1

2
ð�uð3Þ2 þ �uð1Þ2 Þoxyqð3Þ � �uð2Þ2 oyyqð2Þ:



638 A. Lerat et al. / Journal of Computational Physics 225 (2007) 635–651
The necessary and sufficient condition for (7) to be vorticity preserving, i.e. for RHS to be zero, for any qð1Þ,
qð2Þ and qð3Þ is
�uð2Þ1 ¼ 0; �uð2Þ2 ¼ 0;

�uð3Þ1 ¼ ��uð1Þ1 ; �uð3Þ2 ¼ ��uð1Þ2 ;

�uð3Þ1 � �uð1Þ1 ¼ �uð3Þ2 � �uð1Þ2

8>><
>>:
which gives
�uð1Þ1 ¼ �uð1Þ2 ¼ �e; �uð2Þ1 ¼ �uð2Þ2 ¼ 0; �uð3Þ1 ¼ �uð3Þ2 ¼ e; ð10Þ

where e is an arbitrary parameter. So the eigenvalues of e1U1 (resp. e2U2) are proportional to those of A (resp.
B). Since the eigenvectors of U1 (resp. U2) are those of A (resp. B), we obtain the condition (8). h

Example: The dissipation operator in the Lax–Wendroff method is defined by
U1 ¼ A; U2 ¼ B; e1 ¼ e2 ¼
Dt
2
;

q ¼ oxf þ oyg:
With these choices, System (7) becomes:
otwþ oxf þ oyg ¼
Dt
2
½oxðA2oxwþ ABoywÞ þ oyðBAoxwþ B2oywÞ�: ð11Þ
Since Condition (8) holds with e ¼ Dt=2, this system is vorticity preserving. Here we recover at the continuous
level the result found by Morton and Roe [10].
2.2. Discrete analysis

To transfer at the discrete level the above result on vorticity preservation, we only need a single difference
approximation of the x and y-derivatives involved in System (7) and the same discretisation of q in its two
occurrences. Consider the general conservative approximation of System (1):
D0l0wþ D1lf þ D2lg ¼ h1D1ðU1~qÞ þ h2D2ðU2~qÞ; ð12Þ
where D0, D1 and D2 are difference operators, respectively consistent with the t, x and y-derivatives, l0 and l
are discrete spatial operators consistent with the identity that may represent some averaging, h1 and h2 are
positive parameters depending on powers of the steps Dt, dx, dy and tending to zero with them, U1 (resp.
U2) is a matrix having the same eigenvectors as A ¼ df =dw (resp. B ¼ dg=dw) and ~q is a vector involving dis-
crete functions of w, f and g.

An important point is that the space operators D1, D2, l and l0 are centred and the right-hand side of (12) is
supposed to be a numerical dissipation. The accuracy of the space operators may be of any even order.

The discrete vorticity is defined as
~x ¼ D1v� D2u; ð13Þ
where u and v are the fluid velocity components.
For pure acoustics, vorticity preservation means
D0l0 ~x ¼ 0: ð14Þ
Theorem 2. For the acoustic system, the scheme (12) is vorticity preserving for any choice of ~q if and only if
h1U1 ¼ hA; h2U2 ¼ hB; ð15Þ

where h is a scalar parameter.
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Proof 2. By taking the discrete curl of the velocity equations of the scheme (12), we obtain the discrete vor-
ticity equation:
D0l0
~curlw þ D1l ~curlf þ D2l ~curlg ¼ h1D1

~curl1 þ h2D2
~curl2; ð16Þ
where
~curlw ¼ D1wð3Þ � D2wð2Þ;
~curlf ¼ D1f ð3Þ � D2f ð2Þ; ~curlg ¼ D1gð3Þ � D2gð2Þ;

~curlp ¼ D1ðUp~qÞð3Þ � D2ðUp~qÞð2Þ; p ¼ 1; 2:
Calculations of the terms in the left-hand side of Eq. (16) gives
~LHS ¼ D0l0ðD1v� D2uÞ � D1lD2p þ D2lD1p ¼ D0l0 ~x:
Similarly as in Proof 1, by denoting �uðiÞp ¼ hpuðiÞp , the right-hand side of Eq. (16) can be written as
~RHS ¼ �uð2Þ1 D1D1~qð3Þ þ
1

2
ð�uð3Þ2 � �uð1Þ2 � �uð3Þ1 þ �uð1Þ1 ÞD1D2~qð1Þ �

1

2
ð�uð3Þ1 þ �uð1Þ1 ÞD1D2~qð2Þ

þ 1

2
ð�uð3Þ2 þ �uð1Þ2 ÞD1D2~qð3Þ � �uð2Þ2 D2D2~qð2Þ: ð17Þ
The necessary and sufficient condition for ~RHS to be zero for any ~qð1Þ, ~qð2Þ and ~qð3Þ is
�uð1Þ1 ¼ �uð1Þ2 ¼ �h; �uð2Þ1 ¼ �uð2Þ2 ¼ 0; �uð3Þ1 ¼ �uð3Þ2 ¼ h; ð18Þ

where h is an arbitrary parameter, which matches the condition (15). h

Examples: Consider a Cartesian mesh (xj ¼ jdx, yk ¼ kdy) and define the difference and average operators:
ðd1vÞjþ1
2;k
¼ vjþ1;k � vj;k; ðl1vÞjþ1

2;k
¼ 1

2
ðvjþ1;k þ vj;kÞ;

ðd2vÞj;kþ1
2
¼ vj;kþ1 � vj;k; ðl2vÞj;kþ1

2
¼ 1

2
ðvj;kþ1 þ vj;kÞ;
where 2j and 2k are integers, so that for instance:
ðd1vÞj;k ¼ vjþ1
2;k
� vj�1

2;k
; ðl1vÞj;k ¼

1

2
ðvjþ1

2;k
þ vj�1

2;k
Þ:
For the time discretisation tn ¼ nDt, we use the time difference operators:
ðDvÞn ¼ vnþ1 � vn; ð19Þ

ðDvÞnþ1 ¼ 3

2
vnþ1 � 2vn þ 1

2
vn�1; ð20Þ
where n is a positive integer.

(a) Consider the Lax–Wendroff–Ni (LWN) scheme [11]:
Dw
Dt
þ d1l1l

2
2

dx
f þ d2l2l

2
1

dy
g ¼ Dt

2

d1l2

dx
A

d1l2

dx
f þ d2l1

dy
g

� �� �
þ Dt

2

d2l1

dy
B

d1l2

dx
f þ d2l1

dy
g

� �� �
: ð21Þ

This scheme is of the form (12) with

D0 ¼
1

Dt
D; D1 ¼

1

dx
d1l2; D2 ¼

1

dy
d2l1; l0 ¼ I; l ¼ l1l2

U1 ¼ A; U2 ¼ B; h1 ¼ h2 ¼
Dt
2
; ~q ¼ d1l2

dx
f þ d2l1

dy
g:
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The discrete vorticity (13) is the compact vorticity:

~xjþ1
2;kþ

1
2
¼ d1l2

dx
v� d2l1

dy
u

� �
jþ1

2;kþ
1
2

: ð22Þ

Condition (15) is satisfied with h ¼ Dt=2, so that the LWN scheme preserves the discrete vorticity, namely

D~x
Dt

� �n

jþ1
2;kþ

1
2

¼ 0;

or else

~xnþ1
jþ1

2;kþ
1
2
¼ ~xn

jþ1
2;kþ

1
2

ð23Þ

as already found by Morton and Roe [10].

(b) Consider a slightly different version of the Lax–Wendroff scheme defined on the same 3 · 3-point stencil

as
Dw
Dt
þ d1l1

dx
f þ d2l2

dy
g ¼ Dt

2

d1

dx
A

d1

dx
f þ d2l1l2

dy
g

� �� �
þ Dt

2

d2

dy
B

d1l1l2

dx
f þ d2

dy
g

� �� �
: ð24Þ

This scheme cannot be put in the form (12) because there is not a single ~q on the right-hand side of Eq.
(24). Scheme (24) is of the form:

D0l0wþ D1lf þ D2lg ¼ h1D1ðU1~q1Þ þ h2D2ðU2~q2Þ ð25Þ
with

D0 ¼
1

Dt
D; D1 ¼

1

dx
d1l1; D2 ¼

1

dy
d2l2; l0 ¼ l ¼ I;

U1 ¼ A; U2 ¼ B; h1 ¼ h2 ¼
Dt
2
; ~q1 ¼

d1

l1dx
f þ d2l2

dy
g; ~q2 ¼

d1l1

dx
f þ d2

l2dy
g;

where l1 and l2 in denominators should be understood as in Pade fraction operators.
Following the same lines as in the proof of Theorem 2, it can be shown that a general scheme in form

(25) is vorticity preserving for any choice of ~q1 and ~q2 if and only if U1 ¼ U2 ¼ 0, which excludes dissi-
pative schemes. Thus the form (25) is not well-suited to the construction of vorticity-preserving schemes.

For the special choices defining Scheme (24), the discrete vorticity equation reduces to:

D0l0 ~x ¼ ~RHS

with

~RHS ¼ Dt
2

D1D2ð~qð1Þ2 � ~qð1Þ1 Þ ¼
Dt
2

d1

dx
d2

dy
d2l1

dy
ð1� l2

2Þv�
d1l2

dx
ð1� l2

1Þu
� �

:

Since ~RHS is not null, Scheme (24) is not vorticity preserving. Numerical experiments confirm that vor-
ticity is diffused by this scheme.
(c) Consider a residual-based scheme defined by
ðK~rÞnþ1
j;k ¼ 0; ð26Þ

where ~r denotes the discrete residual:

~rnþ1
jþ1

2;kþ
1
2
¼ l1l2

Dw
Dt
þ d1l2

dx
f þ d2l1

dy
g

� �nþ1

jþ1
2;kþ

1
2

ð27Þ

and K is the difference operator:

K ¼ l1l2 �
1

2
ðd1l2U1 þ d2l1U2Þ; ð28Þ
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with the matrices:

U1 ¼
minðdx; dyÞ

dx
A; U2 ¼

minðdx; dyÞ
dy

B: ð29Þ

This scheme is second order accurate (in time and space) and unconditionally stable in L2. It can be cast
in the form (12) with the above U1, U2 and

D0 ¼
1

Dt
D; D1 ¼

1

dx
d1l2; D2 ¼

1

dy
d2l1;

l0 ¼ l2; l ¼ l1l2;

h1 ¼
dx
2
; h2 ¼

dy
2
;

~q ¼ ~r:

Condition (15) is satisfied with h ¼ minðh1; h2Þ, so that scheme (26)–(29) is vorticity preserving, namely

l0

D~x
Dt

� �nþ1

jþ1
2;kþ

1
2

¼ 0; ð30Þ

where ~x is the compact vorticity (22). By defining the starting scheme (for n = 0) of the 3 time-level
scheme (26)–(29) as the same scheme in which D is simply replaced by D, we can deduce from (30):

ðl0 ~xÞnþ1
jþ1

2;kþ
1
2
¼ ðl0 ~xÞnjþ1

2;kþ
1
2
: ð31Þ
(d) Let us point out that the residual-based schemes considered in [8] cannot be put in the form (12) for the
same reason as the one given above for the Lax–Wendroff version (24). Again, numerical experiments
show that vorticity is diffused by these schemes.

(e) Note that numerical dissipations based on higher-order derivatives can also be investigated using The-
orem 2 by choosing ~q properly.

3. Linearised Euler equations

Linearising the Euler equations around a uniform flow at speed ðu0; v0Þ gives the equations of acoustics with
advection. In a dimensionless form where the sound speed and the density of the uniform flow are equal to
one, these equations can be written in the form (1) with
w ¼
p

u

v

2
64
3
75; f ¼ f ðwÞ ¼

pu0 þ u

uu0 þ p

vu0

2
64

3
75; g ¼ gðwÞ ¼

pv0 þ v

uv0

vv0 þ p

2
64

3
75 ð32Þ
and the same notations as in Section 2.
By taking the curl of the velocity equations, we obtain
otxþ u0oxxþ v0oyx ¼ 0: ð33Þ

Here the vorticity is advected at the constant speed ðu0; v0Þ without alteration. Similarly as in pure acoustics,
there is no creation or diffusion of vorticity.

Consider again the general approximation (12) of System (1) and define the discrete vorticity by the expres-
sion (13).

Definition 1. For the linearised Euler equations, the scheme (12) is said to be vorticity preserving if the discrete
vorticity ~x satisfies
ðD0l0 þ u0D1lþ v0D2lÞ~x ¼ 0: ð34Þ

This definition means that the numerical dissipation of Scheme (12), i.e. the right-hand side of (12), does not

appear in the discrete vorticity equation. Note that for pure acoustics ðu0 ¼ v0 ¼ 0Þ, Eq. (34) reduces to (14),
that is Definition 1 extends the one used previously.
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For the linearised Euler equations, the Jacobian matrices of the flux are:
A ¼
u0 1 0

1 u0 0

0 0 u0

2
64

3
75; B ¼

v0 0 1

0 v0 0

1 0 v0

2
64

3
75: ð35Þ
Let us denote by A0 and B0 the above matrices for u0 ¼ v0 ¼ 0, i.e. for pure acoustics.

Theorem 3. For the linearised Euler equations, the scheme (12) is vorticity preserving for any choice of ~q if and

only if
h1U1 ¼ hA0; h2U2 ¼ hB0; ð36Þ

where h is a scalar parameter.

Proof 3. For the linearised Euler equations, the eigenvalues of A and B are:
að1Þ ¼ u0 � 1; að2Þ ¼ u0; að3Þ ¼ u0 þ 1;

bð1Þ ¼ v0 � 1; bð2Þ ¼ v0; bð3Þ ¼ v0 þ 1;
and we have
A ¼ T A Diag½aðiÞ�T�1
A ; B ¼ T B Diag½bðiÞ�T�1

B ;
with the same matrices TA and TB as for pure acoustics. Therefore, the expressions of the matrices Up in terms
of their eigenvalues uðiÞp are exactly the same as those given in Proof 1.

By taking the discrete curl of the velocity equations of the scheme (12), we obtain the discrete vorticity
equation (16) with w, f and g now defined by (32).

The left-hand side of Eq. (16) becomes:
~LHS ¼ D0l0 ~xþ D1lðu0 ~x� D2pÞ þ D2lðv0 ~xþ D1pÞ ¼ ðD0l0 þ u0D1lþ v0D2lÞ~x:

The right-hand side of Eq. (16) is still (17), so that the condition for ~RHS to be zero for any ~q is (18), which
should now be written as the condition (36). h

Example: Consider the modified LWN scheme defined from the general scheme (12) as the LWN scheme
(21) except that the matrices Up are taken as:
U1 ¼ A0; U2 ¼ B0: ð37Þ

Condition (36) is satisfied with h ¼ Dt=2 so that this scheme is vorticity preserving for the linearised Euler
equations. However, the difficulty is that the modification (37) corrupts the numerical stability as well as
the second-order accuracy: the modified LWN scheme is first-order accurate and unstable, except when
u0 ¼ v0 ¼ 0.

The above example shows that the assumption (36) may be too restrictive. Thus, let us now look for
schemes of the general form (12) satisfying (15) – rather than (36) – that are vorticity preserving not for
any choice of ~q, but for special choices of this ~q.

Lemma 1. For the linearised Euler equations, the discrete vorticity equation of the scheme (12) with the condition

(15) can be written as
ðD0l0 þ u0D1lþ v0D2lÞ~x ¼ hðu0D1 þ v0D2Þ ~curlq; ð38Þ

where
~curlq ¼ D1~qð3Þ � D2~qð2Þ:
Proof. As shown before, the discrete curl of the velocity equations of the scheme (12) is
ðD0l0 þ u0D1lþ v0D2lÞ~x ¼ ~RHS;
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where ~RHS is given by (17). Owing to the condition (15) with the matrices (35), the eigenvalues of h1U1 and
h2U2 are here equal to:
�uð1Þ1 ¼ hðu0 � 1Þ; �uð2Þ1 ¼ hu0; �uð3Þ1 ¼ hðu0 þ 1Þ;
�uð1Þ2 ¼ hðv0 � 1Þ; �uð2Þ2 ¼ hv0; �uð3Þ2 ¼ hðv0 þ 1Þ:
Thus, the right-hand side (17) reduces to:
~RHS ¼ hðu0D2
1~q
ð3Þ � u0D1D2~qð2Þ þ v0D1D2~qð3Þ � v0D2

2~q
ð2ÞÞ ¼ hðu0D1 þ v0D2Þ ~curlq
and the discrete vorticity equation becomes Eq. (38). h

Theorem 4. For the linearised Euler equations, the scheme (12) with the condition (15) and
~q ¼ D1f þ D2g ð39Þ

is not vorticity preserving, except when u0 ¼ v0 ¼ 0.

Proof 4. For the choice (39), we have
~curlq ¼ D1ðD1f ð3Þ � D2f ð2ÞÞ þ D2ðD1gð3Þ � D2gð2ÞÞ ¼ ðu0D1 þ v0D2Þ~x:

Using Lemma 1, we obtain the discrete vorticity equation:
ðD0l0 þ u0D1lþ v0D2lÞ~x ¼ hðu0D1 þ v0D2Þ2 ~x; ð40Þ

where
ðu0D1 þ v0D2Þ2 ¼ u2
0D2

1 þ 2u0v0D1D2 þ v2
0D2

2:
Clearly, the right-hand side of Eq. (40) is not null in general, but produces a dissipation of the discrete
vorticity. h

Example: The LWN scheme (21) is of the form (12) with the discrete operators D0, D1, D2, l0 and l defined
in Example (a) of Section 2. It satisfies the condition (15) with h ¼ Dt=2 and (39) holds. Therefore, the LWN
scheme is not vorticity preserving for the linearised Euler equations, except for pure acoustics.

Contrary to the pure acoustics case, Theorem 4 shows that the choice of ~q ¼ D1f þ D2g (as in the Lax–
Wendroff–Ni scheme) cannot ensure vorticity preserving when advection occurs. Nevertheless the proof of The-
orem 4 suggests that the difficulty can be tided over by adding the unsteady term D0lw to ~q, i.e. by taking ~q as
the full residual. This new option is considered in Theorems 5 and 6.

Theorem 5. For the linearised Euler equations, the scheme (12) with the condition (15), l0 = l2 and
~q ¼ D0lwþ D1f þ D2g ð41Þ

is vorticity preserving provided the discrete operator:
Kx ¼ l� hðu0D1 þ v0D2Þ ð42Þ

is non-singular.

Proof 5. For the choice (41), we have
~curlq ¼ ðD0lþ u0D1 þ v0D2Þ~x
so that, from Lemma 1, the discrete vorticity equation reads
ðD0l
2 þ u0D1lþ v0D2lÞ~x ¼ hðu0D1 þ v0D2ÞðD0lþ u0D1 þ v0D2Þ~x
which can also be written as:
KxðD0lþ u0D1 þ v0D2Þ~x ¼ 0: ð43Þ
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If Kx is non-singular, this equation reduces to:
ðD0lþ u0D1 þ v0D2Þ~x ¼ 0
or (34) after applying l, which shows the vorticity preservation. h

Example: The residual-based scheme (26)–(29) is of the form (12) with the discrete operator D0, D1, D2 and
l given in Example (a) of Section 2 and l0 = l2. Since (15) and (41) holds, Theorem 5 shows that this scheme is
vorticity preserving for the linearised Euler equations when Kx is non singular. Here:
Kx ¼ l1l2 �
1

2
minðdx; dyÞ u0

d1l2

dx
þ v0

d2l1

dy

� �
:

The Fourier symbol of Kx is:
K̂x ¼ cos
n
2

cos
g
2

1� i a1u0 tan
n
2
þ a2v0 tan

g
2

� �� �
; ð44Þ
where i2 ¼ �1, n and g denote the reduced wave numbers in the x and y-directions and
a1 ¼
minðdx; dyÞ

dx
; a2 ¼

minðdx; dyÞ
dy

:

The operator Kx is non-singular if and only if the modulus of jK̂xj does not vanish. This modulus is:
jK̂xj2 ¼ cos
n
2

cos
g
2

� �2

1þ a1u0 tan
n
2
þ a2v0 tan

g
2

� �2
" #

:

Clearly jK̂xj does not vanish except when
cos
n
2
¼ 0 or cos

g
2
¼ 0
that is
n ¼ p or g ¼ p ðmod2pÞ;

which corresponds to the shortest wavelengths.

In the above theorem, the scheme is supposed to satisfy the condition (15), i.e. to use dissipation matrices
U1 and U2 proportional to A and B, which excludes more sophisticated dissipation matrices such as those
encountered in upwind schemes. For the special choice (41) of ~q, it is possible to get rid of Condition (15)
and in addition to remove the assumption on U1 and U2 eigenvectors made in the definition of Scheme
(12). With the choice (41), Theorem 5 can be extended as follows.

Theorem 6. For the linearised Euler equations, the scheme (12) with l0 = l2 and ~q defined by (41) is vorticity

preserving provided the discrete operator:
K ¼ l� h1D1U1 � h2D2U2 ð45Þ

is non-singular.

Proof 6. By taking the curl of the velocity equations of the scheme (12), we obtain the discrete vorticity
equation:
ðD0l0 þ u0D1lþ v0D2lÞ~x ¼ h1D1
~curl1 þ h2D2

~curl2; ð46Þ

where
~curlp ¼ D1ðUp~qÞð3Þ � D2ðUp~qÞð2Þ; p ¼ 1; 2; ð47Þ
~q ¼ D0lwþ D1f þ D2g: ð48Þ
Now for l0 = l2, the scheme (12) can be written as
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l~q ¼ h1D1ðU1~qÞ þ h2D2ðU2~qÞ

that is
K~q ¼ 0
with K given by (45).
If K is non-singular, we obtain ~q ¼ 0 so that the right-hand side of (46) vanishes and the scheme is vorticity

preserving. h
4. Full Euler equations

The Euler equations are of the form (1) with
w ¼

q

qu

qv

qE

2
6664

3
7775; f ðwÞ ¼

qu

qu2 þ p

quv

ðqE þ pÞu

2
6664

3
7775; gðwÞ ¼

qv

quv

qv2 þ p

ðqE þ pÞv

2
6664

3
7775; ð49Þ
where q is the density, p the pressure, u and v the components of the fluid velocity ~V and E is the specific total
energy. The system is closed by a thermodynamic state equation.

A common way to derive the vorticity equation consists in taking the curl of the velocity equation:
ot
~V þ ð~V � ~rÞ~V þ 1

q
~rp ¼ 0:
This leads to the well-known equation:
ot~xþ ð~V � ~rÞ~x ¼ ð~x � ~rÞ~V � ð ~r � ~V Þ~xþ
1

q2
~rq� ~rp ð50Þ
for the vorticity vector ~x ¼ ~r� ~V .
The left-hand side of (50) is the advective derivative of ~x. The right-hand side contains the terms modifying

the ordinary vorticity transport: the first term represents the stretching and warping of the vorticity tubes (it
vanishes in the 2-D case), the second term accounts for the compressibility effect (it vanishes when ~r � ~V ¼ 0)
and the last term describes the baroclinic effects (it vanishes in the barotropic case, e.g. for isentropic flows).

However, since the discrete form of the vorticity equation (50) is not easy to obtain for a conservative
numerical scheme, we will rather use a vorticity equation derived by directly taking the curl of the momentum
equations:
otðq~V Þ þ ~r � ðq~V � ~V Þ þ ~rp ¼ 0:
This leads to
ot
~Xþ ~r� ½ ~r:ðq~V � ~V Þ� ¼ 0; ð51Þ
with
~X ¼ ~r� ðq~V Þ ¼ q~xþ ~rq� ~V :
Remarks:

(i) The pressure is not involved in Eq. (51) in the general case.
(ii) The linearisation of Eq. (51) around a constant state of density q0 ¼ 1 and velocity ~V 0 gives

ðot þ ~V 0 � ~rÞ~xþ ~req � ~V 0 ¼ 0 ð52Þ

with
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eq ¼ ðot þ ~V 0 � ~rÞq0 þ ~r � ~V 0;

where q0 and ~V 0 are the density and velocity perturbations. Since the linearised mass equation is eq ¼ 0, Eq.
(52) reduces to the vorticity equation (33) previously used for the linearised Euler equations.

In two space dimensions, the vector ~X reduces to its component X normal to the x, y-plane:
X ¼ oxðqvÞ � oyðquÞ ð53Þ

and the vorticity equation (51) reads
otXþ ox½oxðquvÞ þ oyðqv2Þ� � oy ½oxðqu2Þ þ oyðquvÞ� ¼ 0: ð54Þ

Be given a conservative scheme, obtaining a discrete form of Eq. (54) will simply consist in taking the discrete
curl of the second and third components of the scheme.

Definition 2. For the Euler equations, the scheme (12) is said to be vorticity preserving if
D0l0
~Xþ D1½D1lðquvÞ þ D2lðqv2Þ� � D2½D1lðqu2Þ þ D2lðquvÞ� ¼ 0; ð55Þ
where
~X ¼ D1ðqvÞ � D2ðquÞ: ð56Þ

We are now able to extend Theorem 6 to the full Euler equations.

Theorem 7. For the Euler equations, the scheme (12) with l0 = l2 and ~q defined by (41) is vorticity preserving

provided the discrete operator K in (45) is non-singular.

Proof 7. By taking the discrete curl of the momentum equations of the scheme (12), we obtain:
D0l0
~curlw þ D1l ~curlf þ D2l ~curlg ¼ h1D1

~curl1 þ h2D2
~curl2 ð57Þ
with
~curlw ¼ D1ðqvÞ � D2ðquÞ ¼ ~X;

~curlf ¼ D1ðquvÞ � D2ðqu2 þ pÞ; ~curlg ¼ D1ðqv2 þ pÞ � D2ðquvÞ;
and (47), (48). Clearly, the pressure disappears in the left-hand side of Eq. (57). With the same argument as in
Proof 6, the right-hand side vanishes and Eq. (57) reduces to the definition Eq. (55). h

Example: The residual-based scheme (26)–(28) with any dissipation matrices U1 and U2 is of the form (12) with
l0 = l2 and it satisfies (41). Theorem 6 shows that this residual-based scheme is vorticity preserving for the
Euler equations provided the operator K defined by (45) is non-singular. For instance, matrices U1 and U2

proposed in [8] are acceptable, except for the shortest wavelengths of the numerical solution.
5. Numerical validations for the Euler equations

5.1. Numerical schemes

5.1.1. RBV2 scheme

In this section, the residual-based scheme (26)–(28) with the second-order time differencing formula (20) will
be applied to the full Euler equations for computing steady and unsteady vortex flows. The dissipation matri-
ces used are defined as:
U1 ¼ T A Diag½uðiÞ1 �T�1
A ; U2 ¼ T B Diag½uðiÞ2 �T�1

B ; ð58Þ
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where
uðiÞ1 ¼ sgnðaðiÞÞuðiÞ; uðiÞ2 ¼ sgnðbðiÞÞwðiÞ;

uðiÞ ¼ min 1;
dyjaðiÞj

dx max
l
jbðlÞj

0
@

1
A; wðiÞ ¼ min 1;

dxjbðiÞj
dy max

l
jaðlÞj

0
@

1
A:
These dissipation matrices are close to those of [8], except the replacement of minl by maxl in uðiÞ and wðiÞ to
avoid difficulties with zero eigenvalues when there is no advection. Although the schemes in [8] are residual-
based, let us recall that they cannot be cast in the form (12) because they do not use a single ~q in their numer-
ical dissipation. Experiments with these schemes clearly demonstrate vorticity diffusion. On the contrary, the
residual-based scheme (26)–(28) is vorticity preserving. Since it is also second-order accurate in time and space,
we will refer to it as the RBV2 scheme. This scheme is fully implicit in time and unconditionally stable. It is
solved iteratively using a dual time technique. A study of the dissipation properties shows that for diagonal
flows, the shortest wavelengths are dissipated in the streamwise direction but not in the cross direction. This
is sufficient to perform the present test cases but for the computation of more complex flows, high-order filters
[4] might be necessary to avoid spurious oscillations in the cross directions. Concerning the precision of RBV2,
a theoretical analysis of the modified equation in the case of the linearised Euler equations shows that for
advection dominated flows at speed ~V 0, the best solution is obtained on a square mesh ðdx ¼ dy ¼ hÞ when
using a time step satisfying:
Dt ¼ 1

2

h

j~V 0j
: ð59Þ
5.1.2. D3 scheme

To allow a clear appreciation of the vorticity-preservation property, the numerical results of the RBV2
scheme will be compared to those given by a directional third-order scheme [12], called D3. This scheme is
similar to the well-known Roe-MUSCL scheme (third-order version without limiter or entropy correction
[13]). The D3 scheme reads:
3wnþ1 � 4wn þ wn�1

2Dt

� �
j;k

þ d1F
dx
þ d2G

dy

� �nþ1

j;k

¼ 0 ð60Þ
with the numerical fluxes:
F jþ1
2;k
¼ I� d2

1

6

� �
l1f þ 1

12
jARjd3

1w
� �

jþ1
2;k

;

Gj;kþ1
2
¼ I� d2

2

6

� �
l2g þ 1

12
jBRjd3

2w
� �

j;kþ1
2

;

ð61Þ
where AR and BR are Roe’s averages [14] of the Jacobian flux matrices at the interfaces. This scheme is fully
implicit in time and unconditionally stable. It is solved with a dual time technique similarly as the RBV2
scheme.

5.2. Steady vortex

We consider the 2-D inviscid vortex proposed by Yee et al. [7], for which the entropy is uniform. The vortex
is initially located at the origin ðx ¼ y ¼ 0Þ. Its velocity components u, v and the absolute temperature T are
defined in non-dimensional form as:
u ¼ � C
2p

y exp
1� r2

2

� �
; v ¼ C

2p
x exp

1� r2

2

� �
; T ¼ 1� ðc� 1ÞC2

8cp2
expð1� r2Þ; ð62Þ
where r2 ¼ x2 þ y2. The vortex strength C is set equal to 5. The thermodynamic equation of state is the ideal
law p ¼ qT , with constant specific heats of ratio c = 1.4. The uniformity of entropy gives q ¼ T 1=c�1. This vor-
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tex is a steady solution of the Euler equations. Numerically, we solve the unsteady Euler equations using the
above vortex as the initial condition. The observed evolution is due uniquely to the numerical errors, namely
the dissipative errors that are not compensated by any physical effect, contrary to the case of a shock wave
where nonlinear compression can balance dissipation. The computational domain extends from �5 to 5 in
the x and y-directions. Periodic boundary conditions are applied in both directions. A regular Cartesian grid
is used with 50� 50 cells ðdx ¼ dy ¼ 0:2Þ. The evolution is computed up to time tf ¼ 500 with a time step
Dt ¼ 1, i.e. CFL ¼ Dt

dx maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

þ
ffiffiffiffiffiffi
cT
p
Þ ¼ 9:6. The vorticity fields shown in Fig. 1 and the cut of the solu-

tions shown in Fig. 2 clearly assess that the stationary vortex (62) is seen as a steady solution by the RBV2
scheme while it is not the case for the D3 scheme. After 500 iterations the initial vortex is indeed mainly dis-
sipated by the D3 scheme. The numerical dissipation of D3 is also responsible for the symmetry-loss of the
computed solution.

5.3. Vortex advection along x-axis

We consider now the advection of the same vortex at constant velocity ~V 0 of components u0 ¼ 0:5, v0 ¼ 0.
The initial condition is the same as in the steady vortex case except that the velocity components (62) are now
augmented with the velocity ðu0; v0Þ. This unsteady problem is solved in the same computational domain, with
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Fig. 1. Evolution of a steady vortex. Vorticity fields of the (a) exact, (b) RBV2 scheme and (c) D3 scheme solutions at t = 500, with
dx ¼ dy ¼ 0:2.
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Fig. 2. Evolution of a steady vortex. Cuts of the exact (–), RBV2 scheme (s) and D3 scheme (h) solutions at the centre-line y = 0, at
t = 500, with dx ¼ dy ¼ 0:2: (a) pressure, (b) tangential velocity.
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Fig. 3. Advection of a vortex. Vorticity fields of the (a) exact, (b) RBV2 scheme and (c) D3 scheme solutions at t = 100, with
dx ¼ dy ¼ 0:2.
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the same periodic boundary conditions and the same grid as in the steady case. The time step is Dt ¼ 0:2, i.e.
CFL ¼ 2:42, which satisfies (59). The vortex evolution is computed up to time tf ¼ 100, corresponding to 5
crossings of the domain by the vortex. The vorticity fields are displayed in Fig. 3 and the solutions along a
x-line passing through the vortex centre is shown in Fig. 4. Contrary to the steady-case, the time discretisation
now plays a role in the solution. With the optimal choice of the time step (59), the vortex calculated by RBV2
is more precisely located than the one calculated by D3. But, the important point is that the spatial numerical
dissipation of RBV2 scheme vanishes in the discrete vorticity equation, which allows a better representation of
the vortex solution.

5.4. Oblique vortex advection

Again we keep the same vortex and consider its advection at velocity modulus j~V 0j ¼ 0:5 in various direc-
tions, of angles a ¼ 0, p=8 and p=4 with respect to the x-axis. Owing to the symmetries in the RBV2 scheme,
the results obtained are representative of an advection problem along space direction varying from a ¼ 0 to
a ¼ 2p with step angle da ¼ p=8. The evolution is computed up to time tf ¼ 100 in the same conditions as
above. Fig. 5 presents the vorticity fields at different times. Snapshots are shown at t ¼ 0, 20, 40, 60, 80
and 100 for the three advection directions considered. This visualisation shows that the RBV2 scheme pro-
duces much accurate vortex solutions that depend very weakly on the advection direction.
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Fig. 4. Advection of a vortex. Cuts of the exact (–), RBV2 scheme (s) and D3 scheme (h) solutions at the centre of the vortex, at t = 100,
with dx ¼ dy ¼ 0:2: (a) pressure, (b) tangential velocity.



Fig. 5. Vorticity fields computed by the RBV2 scheme for several advection directions. Solutions at t = 0, 20, 40, 80 and 100, with
dx ¼ dy ¼ 0:2.
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6. Note on the extension to the 3-D Euler equations

Consider the three-dimensional Euler equations written in a Cartesian coordinate system ðx1; x2; x3Þ as
otwþ
X

i

oifi ¼ 0; ð63Þ
where oi denotes the spatial derivative o=oxi, fi ¼ fiðwÞ is a flux component and the summation is for i ¼ 1, 2,
3.

These equations are approximated on a Cartesian mesh by the conservative scheme:
D0l0wþ
X

i

Dilfi ¼
X

i

hiDiðUi~qÞ; ð64Þ
where D0 (resp. Di) is a difference operator consistent with ot (resp. oi), l0 and l are discrete spatial operators
consistent with the identity, hi is a positive parameter depending on powers of the discretisation steps and
tending to zero with them. All the space operators (D1, D2, D3, l and l0) are centred. The right-hand side
of (64) is supposed to be a numerical dissipation in which U1, U2 and U3 are matrices and ~q is a vector depend-
ing on discrete functions of w, f1, f2 and f3.

The discrete vorticity ~X is defined as a discrete curl of the momentum q~V , i.e.
~X ¼ ~r� ðq~V Þ

with the discrete operator
~r ¼
D1

D2

D3

0
B@

1
CA:
Denoting by ui the Cartesian components of the velocity ~V , the Cartesian components of ~X can be written as:
~X1 ¼ D2ðqu3Þ � D3ðqu2Þ;
~X2 ¼ D3ðqu1Þ � D1ðqu3Þ;
~X3 ¼ D1ðqu2Þ � D2ðqu1Þ:
With the ~r operator, the momentum equations of Scheme (64) read:
D0l0ðq~V Þ þ ~r � lðq~V � ~V Þ þ ~rlp ¼ d;
where d is the numerical dissipation.
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Considering the exact vorticity equation (51), Definition 2 should be generalised as follows.

Definition 3. For the Euler equations, the scheme (64) is said to be vorticity preserving if
D0l0
~Xþ ~r� ½ ~r � lðq~V � ~V Þ� ¼ 0: ð65Þ
It is now straightforward to extend the proof of Theorem 7 and get the following main result.

Theorem 8. For the Euler equations, the scheme (64) with l0 = l2 and
~q ¼ D0lwþ
X

i

Difi ð66Þ
is vorticity preserving provided the discrete operator
K ¼ l�
X

i

hiDiUi
is non-singular.
7. Conclusion

A simple vorticity criterion has been derived for a general dissipative scheme applied to the acoustic system
(Theorem 2). This criterion allows to recover the result found by Morton and Roe about the Lax–Wendroff–
Ni scheme, but also to identify a residual-based scheme that preserves the vorticity and give a tool for studying
higher order schemes.

When extending the concept to the Euler equations, vorticity preserving no longer means that vorticity is
time invariant, but that the discrete vorticity equation is properly not affected by the numerical dissipation
present in the scheme. From Theorem 4, the Lax–Wendroff–Ni scheme is proved to be not vorticity preserving
for the linearised Euler equations, except for pure acoustics. On the contrary, schemes involving a time deriv-
ative in the numerical dissipation as the residual-based scheme can be satisfactory for the linearised and full
Euler equations (Theorems 6–8). Vortex calculations with the residual-based scheme RBV2 confirm the inter-
est of a vorticity-preserving scheme, specially when the main flow advects the vortex in an oblique direction.
Extension of the RBV2 scheme to curvilinear meshes and application to a blade–vortex interaction problem
will be presented in a forthcoming paper.
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